Numerical Solution of a Quadratic Integral Equation through Classical Schauder Fixed Point Theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Remark to the Schauder Fixed Point Theorem

In the paper some sufficient conditions are established in order that a continuous map have a fixed point. The results are related to those obtained by R. D. Nussbaum in [18], L. Górniewicz and D. RozpłochNowakowska in [12], S. Szufla in [21] and D. Bugajewski in [6]. The famous Schauder Fixed Point Theorem [20] has been generalized in various directions by using different methods. For referenc...

متن کامل

Hyers–Ulam–Rassias stability of impulsive Volterra integral equation via a fixed point approach

‎In this paper‎, ‎we establish the Hyers--Ulam--Rassias stability and the Hyers--Ulam stability of impulsive Volterra integral equation by using a fixed point method‎.

متن کامل

A Fixed Point Approach to Stability of a Quadratic Equation

Using the fixed point alternative theorem we establish the orthogonal stability of quadratic functional equation of Pexider type f(x + y) + g(x − y) = h(x) + k(y), where f, g, h, k are mappings from a symmetric orthogonality space to a Banach space, by orthogonal additive mappings under a necessary and sufficient condition on f .

متن کامل

Existence of Solutions for some Nonlinear Volterra Integral Equations via Petryshyn's Fixed Point Theorem

In this paper, we study the existence of solutions of some nonlinear Volterra integral equations by using the techniques of measures of noncompactness and the Petryshyn's fixed point theorem in Banach space. We also present some examples of the integral equation to confirm the efficiency of our results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Advanced Mathematical Sciences

سال: 2021

ISSN: 2651-4001

DOI: 10.33434/cams.860254